

Tetrahedron Letters 41 (2000) 823-826

Total synthesis of lipoxin A₄ and lipoxin B₄ from butadiene

A. Rodríguez, M. Nomen, A. B. W. Spur, A. J. J. Godfroid and T. H. Lee c

^aDepartment of Cell Biology, University of Medicine and Dentistry of New Jersey, SOM, Stratford, NJ 08084, USA

^bLaboratorie de Pharmacochimie Moléculaire, Université Paris 7, Paris 75251, France

Received 22 October 1999; revised 5 November 1999; accepted 5 November 1999

Abstract

The total synthesis of LXA₄ and LXB₄ has been achieved starting from butadiene via palladium catalyzed telomerization. Sharpless catalytic AE and C-2 inversion of the 2(S),3(S)-epoxy alcohols, using Myers CO_2/Cs_2CO_3 procedure, generated the asymmetric centers. The flexibility of the strategy allows an easy access to the linear eicosanoids. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: palladium catalyst; eicosanoids; inversion reaction; Katsuki-Sharpless reaction.

Samuelsson and Serhan investigated the interaction between lipoxygenase pathways and isolated two new compounds, lipoxin A_4 (1) and lipoxin B_4 (2).^{1,2} These metabolites of arachidonic acid contain a conjugated tetraene structure. Earlier reports showed that LXA₄ and LXB₄ blocked the effects of PAF and LTB₄ in human cells.³⁻⁶ In animal models of inflammation the activity of LXA₄ was comparable to corticosteroids.⁷ LXA₄ was identified in the bronchoalveolar lavage fluid of humans with different lung diseases.⁸ We could demonstrate that inhaled lipoxin A₄ blocked the bronchoconstriction of leukotrienes in asthmatic subjects.⁹

Chemical syntheses of LXA₄ (1) and LXB₄ (2) are required to produce sufficient quantities to study their biological and pharmacological properties. $^{10-15}$ 2-Deoxy-D-ribose has been used in the chiral pool synthesis of lipoxins. 12,16 In this communication we describe a convenient synthesis of LXA₄ (1) and LXB₄ (2) starting from butadiene via palladium catalyzed telomerization.

The dimerization of butadiene with acetic acid in the presence of Pd(Acac)₂ (0.2%), tri-o-tolylphosphite (0.2%) and NaOAc (3%) at room temperature produced a mixture of the octadienol acetates **4** (13%), **5** (76%) and **6** (11%) in 90% yield after distillation (the ratio of isomers was determined by ¹H NMR) (Scheme 1).^{17–19}

The chiral building block 7 was obtained directly from the mixture of octadienols $\mathbf{4a}$, $\mathbf{5a}$ and $\mathbf{6a}$ by Sharpless cat. AE²⁰ at -25° C to -15° C for 6 h (60% isolated yield, 79% based on $\mathbf{5a}$). The epoxidation

^cDepartment of Allergy and Respiratory Medicine, UMDS, Guy's and St. Thomas Hospital, London SE1 9RT, UK

^{*} Corresponding author. Tel: 1-856-566-7016; fax: 1-856-983-4953; e-mail: spurbw@umdnj.edu (B. W. Spur)

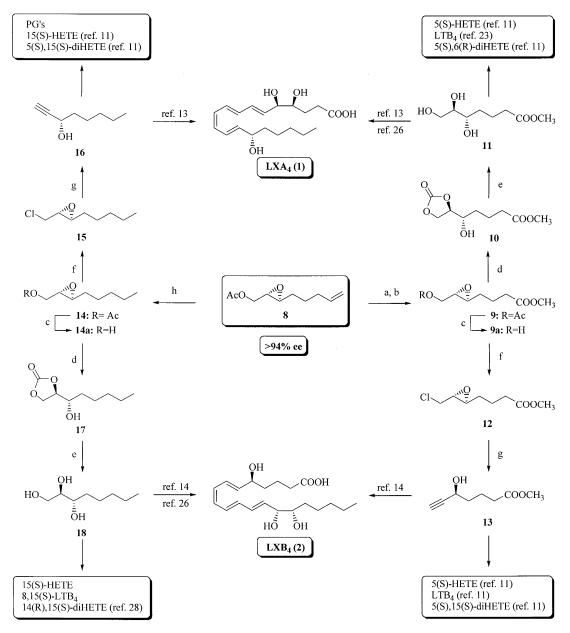
[†] Deceased September 26, 1997.

Scheme 1. (a) AcOH, Pd(Acac)₂ cat., tri-o-tolylphosphite cat., NaOAc cat., rt; (b) K₂CO₃, Na₂SO₄, MeOH, rt

of the *trans* allyl alcohol **5a** was preferred over the *cis* **6a** and the 3-hydroxy allyl isomer **4a** under these reaction conditions. Compound **7** was transformed to the acetate **8** with Ac_2O in pyridine at 0°C (Scheme 2) [>94% ee determined by 1H NMR using $Eu(hfc)_3$ shift reagent in C_6D_6]. The transformation of **8** to the epoxy acetate **9** was carried out as described by Sharpless (RuCl₃, NaIO₄) followed by treatment with CH_2N_2 (71% yield). The cleavage of the acetate in the presence of the epoxide and the methyl ester in **9** was readily achieved with cat. K_2CO_3 in the presence of anhydrous Na_2SO_4 in MeOH. Under these conditions neither ester cleavage nor Payne rearrangements were observed. Simple filtration of the Na_2SO_4 and normal work up gave **9a** in 69% yield and >94% ee (Scheme 3).

$$5a \xrightarrow{a} HO \xrightarrow{Q} \xrightarrow{b} AcO \xrightarrow{Q} > 94\% ee$$

Scheme 2. (a) Dimethyl-L-(+)tartrate (12%), Ti(i-PrO)₄ (10%), TBHP, −25°C→−15°C, 6 h; (b) Ac₂O, pyridine, 0°C, 12 h


The direct conversion of 9a to the C-2 inverted hydroxy carbonate 10, bearing the required 5S,6R-configuration of LXA₄, was achieved with 1 atm CO₂ using Myers procedure (Cs₂CO₃ and 3 Å molecular sieves in DMF at 40° C in 40° W yield). Small quantities of the internal carbonate were detected but were easily removed by flash chromatography. The hydrolysis of the cyclic carbonate in the presence of the methyl ester in 10 could be accomplished by base catalyzed transesterification with cat. NaOMe in MeOH at rt to give 11, the C₁–C₇ building block of LXA₄, identical with material prepared from 2-deoxy-D-ribose. 16,23

The epoxy alcohol **9a** was converted to the chloro epoxide **12** with Ph_3P in CCl_4 at reflux in the presence of a small quantity of $NaHCO_3$ (52% isolated yield). Base catalyzed elimination with excess of LDA at $-70^{\circ}C$ to rt, similar to Yadav procedure, ²⁴ afforded **13** (C_1 – C_7 synthon of LXB₄) in 86% isolated yield. Other reaction conditions produced mixtures of Z and E-vinyl chlorides, besides starting material and the required alkyne **13**, similar as reported by Takano et al.²⁵

The C_{13} – C_{20} building block of LXA₄ **16** was obtained from **8** via hydrogenation to **14** [Rh (5 wt% on alumina), 1 atm H₂, 95% isolated yield]. Compound **14a** was converted to **16** using the same reagents and conditions as described for the transformation of **9a** to **13** (Scheme 3). The C_{13} – C_{20} building block of LXB₄ **18** was obtained from **14a** similar to the transformation of **9a** to **11** (Scheme 3).

Compounds 11 and 18 were transformed to their tri-TES ethers and selectively oxidized in the primary position as previously described. 26 The synthesis of LXA₄ (1) and LXB₄ (2) were completed using Nicolaou's route 13,14 and were identical in all aspects with material prepared from 2-deoxy-Dribose. 12,16,26

In summary, the total synthesis of LXA₄ and LXB₄ from butadiene has been achieved.²⁷ The flexibility of the strategy allows an easy access to the linear eicosanoids as shown in Scheme 3.^{11–14,23,26,28}

Scheme 3. (a) NaIO₄, RuCl₃ cat., CCl₄/CH₃CN/H₂O, 0°C; (b) CH₂N₂, Et₂O, 0°C; (c) K₂CO₃ cat., Na₂SO₄, MeOH, rt; (d) CO₂ (1 atm), Cs₂CO₃, 3 Å molecular sieves, DMF, 40°C; (e) NaOMe cat., MeOH; (f) CCl₄, Ph₃P, NaHCO₃ cat., reflux; (g) LDA (15 equiv.), THF, -70°C \rightarrow rt; (h) H₂, Rh (5 wt% on alumina), EtOAc, rt

Acknowledgements

Financial support of this research in part by Laboratorios Lasa S.A., Barcelona (Spain), the Asthma Research Council, UK and the Department of Cell Biology UMDNJ-SOM is gratefully acknowledged.

References

- 1. Serhan, C. N.; Hamberg, M.; Samuelsson, B. Proc. Natl. Acad. Sci. USA 1984, 81, 5335–5339.
- 2. Samuelsson, B.; Dahlen, S.-E.; Lindgren, J. A.; Rouzer, C. A.; Serhan, C. N. Science 1987, 237, 1171-1176.
- 3. Jacques, C. A. J.; Spur, B. W.; Crea, A. E. G.; Lee, T. H. Brit. J. Pharmacol. 1988, 95, 562-568.
- 4. Lee, T. H.; Horton, C. E., Kyan-Aun, U.; Haskard, D.; Crea, A. E. G.; Spur, B. W. Clin. Sci. 1989, 77, 195-203.
- 5. Grandordy, B. M.; Lacroix, H.; Mavoungou, E.; Krilis, S.; Crea, A. E. G.; Spur, B. W.; Lee, T. H. *Biochem. Biophys. Res. Commun.* **1990**, *167*, 1022–1029.
- 6. Soyombo, O.; Spur, B.W.; Lee, T. H. Allergy 1994, 49, 230-234.
- 7. Takano, T.; Fiore, S.; Maddox, J. F.; Brady, H. R.; Petasis, N. A.; Serhan, C. N. J. Exp. Med. 1997, 185, 1693–1704.
- 8. Lee, T. H.; Crea, A. E. G.; Gant, V.; Spur, B. W.; Marron, B. E.; Nicolaou, K. C.; Reardon, E.; Brezinski, M.; Serhan, C. N. Am. Rev. Resp. Dis. 1990, 141, 1453–1458.
- 9. Christie, P. E.; Spur, B. W.; Lee, T. H. Am. Rev. Respir. Dis. 1992, 145, 1281-1284.
- 10. Corey, E. J.; Su, W.; Cleaver, M. B. Tetrahedron Lett. 1989, 32, 4181-4184.
- 11. Nicolaou, K. C.; Ramphal, J. Y.; Petasis, N. A.; Serhan, C. N. Angew. Chem., Int. Ed. Engl. 1991, 30, 1100-1116.
- 12. Adams, J.; Fitzsimmons, B. J.; Girard, Y.; Leblanc, Y.; Evans, J. F.; Rokach, J. J. Am. Chem. Soc. 1985, 107, 464–469.
- 13. Nicolaou, K. C.; Veale, C. A.; Webber, S. E.; Katerinopoulos, H. J. Am. Chem. Soc. 1985, 107, 7515–7518.
- 14. Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453-461.
- 15. Yadav, J. S.; Barma, D. K.; Dutta, D. Tetrahedron Lett. 1998, 39, 143–146.
- 16. Lee, T. H.; Lympany, P.; Crea, A. E. G.; Spur, B. W. Biochem. Biophys. Res. Commun. 1991, 180, 1416-1421.
- 17. Rose, D.; Lepper, H. J. Organomet. Chem. 1973, 49, 473–476.
- 18. Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley & Sons: New York, 1995.
- 19. Behr, A.; Ilsemann, G. v.; Keim, W.; Krüger, C.; Tsay, Y.-H. Organometallics 1986, 5, 514-518.
- 20. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780.
- 21. Rossiter, B. E.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464–465.
- 22. Myers, A. G.; Widdowson, K. L. Tetrahedron Lett. 1988, 29, 6389-6392.
- 23. Corey, E. J.; Marfat, A.; Munroe, J. E.; Kim, K. S.; Hopkins, P. B.; Brion, F. Tetrahedron Lett. 1981, 22, 1077–1080.
- 24. Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M. Tetrahedron 1990, 46, 7033-7046.
- 25. Takano, S.; Sugihara, Y.; Ogasawara, K. Heterocycles 1994, 39, 59-66.
- 26. Rodríguez, A.; Nomen, M.; Spur, B.W.; Godfroid, J. J. Tetrahedron Lett. 1999, 40, 5161–5164.
- 27. Satisfactory spectroscopic data were obtained for all compounds. Selected spectra: 5: 1 H NMR (CDCl₃, 300 MHz): δ 5.8–5.6 (m, 2H), 5.5 (dtt, J=15.4, 6.4, 1.4 Hz, 1H), 5.0–4.8 (m, 2H), 4.4 (dd, J=6.3, 0.9 Hz, 2H), 2.0–1.9 (m and s, 7H), 1.4 (quint., J=7.5 Hz, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 170.6, 138.2, 135.8, 124.0, 114.5, 64.9, 32.9, 31.3, 27.8, 20.6. 8: ¹H NMR (CDCl₃, 300 MHz): δ 5.9–5.7 (ddt, J=17.2, 10.4, 6.7 Hz, 1H), 5.1–4.9 (m, 2H), 4.4–4.3 (dd, J=12.3, 3.3 Hz, 1H), 3.9 (dd, J=12.3, 6.3 Hz, 1H), 3.0-2.9 (ddd, J=6.3, 3.3, 2.1 Hz, 1H), 2.9-2.8 (m, 1H), 2.1-2.0 (m, 2H), 2.1 (s, 3H), 1.7-1.4 (m, 4H); 13 C NMR (CDCl₃, 75.5 MHz): δ 170.8, 138.2, 115.0, 64.6, 56.4, 55.1, 33.2, 30.8, 24.9, 20.6. **9a**: 1 H NMR $(CDCl_3, 300 \text{ MHz}): \delta 3.8 \text{ (dd, } J=12.6, 2.4 \text{ Hz}, 1\text{H}), 3.6 \text{ (s, 3H)}, 3.5 \text{ (dd, } J=12.6, 4.5 \text{ Hz}, 1\text{H}), 2.9-2.8 \text{ (m, 2H)}, 2.8-2.7 \text{ (br. 3.10 m)}$ s, 1H), 2.3 (t, J=7.3 Hz, 2H), 1.8–1.6 (m, 2H), 1.6–1.4 (m, 2H); 13 C NMR (CDCl₃, 75.5 MHz): δ 173.7, 61.6, 58.2, 55.3, 51.3, 33.2, 30.6, 21.1. **11**: ¹H NMR (CDCl₃, 300 MHz): δ 3.9–3.7 (m, 3H), 3.7 (s, 3H), 3.6–3.5 (m, 1H), 2.4 (t, J=7.2 Hz, 2H), 1.9–1.6 (m, 2H), 1.6–1.4 (m, 2H); 13 C NMR (CDCl₃, 75.5 MHz): δ 174.4, 73.7, 73.2, 63.3, 51.6, 33.5, 32.3, 20.9. **12**: ¹H NMR (CDCl₃, 300 MHz): δ 3.7 (s, 3H), 3.6–3.5 (dd AB system, J=11.7, 5.7 Hz, 1H), 3.5–3.4 (dd AB system, J=11.7, 5.4 Hz, 1H), 3.0 (ddd, J=5.7, 5.4, 2.1 Hz, 1H), 2.9–2.8 (ddd, J=6.3, 4.8, 2.1 Hz, 1H), 2.4–2.3 (t, J=7.3 Hz, 2H), 1.9–1.7 (m, 2H), 1.7–1.5 (m, 2H); 13 C NMR (CDCl₃, 75.5 MHz): δ 173.6, 58.3, 56.8, 51.5, 44.5, 33.3, 30.7, 21.1. **17**: 1 H NMR $(CDCl_{3},\,300\,\,\text{MHz}):\,\delta\,\,4.6\,\,(\text{ddd},\,\textit{\textit{J}}=8.4,\,6.5,\,3.8\,\,\text{Hz},\,1\text{H}),\,4.5\,\,(\text{dd},\,\textit{\textit{J}}=8.4,\,6.5\,\,\text{Hz},\,1\text{H}),\,4.4\,\,(\text{t},\,\textit{\textit{J}}=8.4\,\,\text{Hz},\,1\text{H}),\,3.9\,\,(\text{m},\,1\text{H}),\,2.7\,\,\text{m}$ (br. d, J=4.2 Hz, 1H), 1.5–1.2 (m, 8H), 0.9 (t, J=6.8 Hz, 3H); 13 C NMR (CDCl₃, 75.5 MHz): δ 155.4, 78.7, 70.2, 65.1, 31.7, 31.4, 24.8, 22.3, 13.8. 18: ¹H NMR (CDCl₃/CD₃OD, 300 MHz): δ 3.6–3.5 (dd AB system, J=11.4, 4.2 Hz, 1H), 3.5 (dd AB system, J=11.4, 5.4 Hz, 1H), 3.5–3.4 (m, 1H), 3.4–3.3 (m, 1H), 1.5–1.1 (m, 8H), 0.8–0.7 (t, J=6.6 Hz, 3H); ¹³C NMR $(CDCl_3/CD_3OD, 75.5 \text{ MHz}): \delta 74.0, 73.0, 63.0, 32.6, 31.5, 25.1, 22.2, 13.4.$
- 28. Radmark, O.; Serhan, C.; Hamberg, M.; Lundberg, U.; Ennis, M. D.; Bundy, G. L.; Oglesby, T. D.; Aristoff, P. A.; Harrison, A. W.; Slomp, G.; Scahill, T. A.; Weissmann, G.; Samuelsson, B. J. Biol. Chem. 1984, 259, 13011–13016.